3.5.49 \(\int \frac {1}{x^3 \sqrt {1+x^3}} \, dx\) [449]

Optimal. Leaf size=122 \[ -\frac {\sqrt {1+x^3}}{2 x^2}-\frac {\sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

[Out]

-1/2*(x^3+1)^(1/2)/x^2-1/6*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2)
)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {331, 224} \begin {gather*} -\frac {\sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt {x^3+1}}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*Sqrt[1 + x^3]),x]

[Out]

-1/2*Sqrt[1 + x^3]/x^2 - (Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(
1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(2*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^
3])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \sqrt {1+x^3}} \, dx &=-\frac {\sqrt {1+x^3}}{2 x^2}-\frac {1}{4} \int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=-\frac {\sqrt {1+x^3}}{2 x^2}-\frac {\sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 22, normalized size = 0.18 \begin {gather*} -\frac {\, _2F_1\left (-\frac {2}{3},\frac {1}{2};\frac {1}{3};-x^3\right )}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*Sqrt[1 + x^3]),x]

[Out]

-1/2*Hypergeometric2F1[-2/3, 1/2, 1/3, -x^3]/x^2

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 129, normalized size = 1.06

method result size
meijerg \(-\frac {\hypergeom \left (\left [-\frac {2}{3}, \frac {1}{2}\right ], \left [\frac {1}{3}\right ], -x^{3}\right )}{2 x^{2}}\) \(17\)
default \(-\frac {\sqrt {x^{3}+1}}{2 x^{2}}-\frac {\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{2 \sqrt {x^{3}+1}}\) \(129\)
risch \(-\frac {\sqrt {x^{3}+1}}{2 x^{2}}-\frac {\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{2 \sqrt {x^{3}+1}}\) \(129\)
elliptic \(-\frac {\sqrt {x^{3}+1}}{2 x^{2}}-\frac {\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{2 \sqrt {x^{3}+1}}\) \(129\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*(x^3+1)^(1/2)/x^2-1/2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-
1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1)/(3/2-1
/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^3 + 1)*x^3), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.07, size = 21, normalized size = 0.17 \begin {gather*} -\frac {x^{2} {\rm weierstrassPInverse}\left (0, -4, x\right ) + \sqrt {x^{3} + 1}}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(x^2*weierstrassPInverse(0, -4, x) + sqrt(x^3 + 1))/x^2

________________________________________________________________________________________

Sympy [A]
time = 0.36, size = 32, normalized size = 0.26 \begin {gather*} \frac {\Gamma \left (- \frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {2}{3}, \frac {1}{2} \\ \frac {1}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 x^{2} \Gamma \left (\frac {1}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(x**3+1)**(1/2),x)

[Out]

gamma(-2/3)*hyper((-2/3, 1/2), (1/3,), x**3*exp_polar(I*pi))/(3*x**2*gamma(1/3))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^3 + 1)*x^3), x)

________________________________________________________________________________________

Mupad [B]
time = 0.99, size = 169, normalized size = 1.39 \begin {gather*} -\frac {\sqrt {x^3+1}}{2\,x^2}-\frac {\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{2\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(x^3 + 1)^(1/2)),x)

[Out]

- (x^3 + 1)^(1/2)/(2*x^2) - (((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*
((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asi
n(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(2*(x^3 - x*(((3^(
1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))

________________________________________________________________________________________